Boron Tolerance in Aspergillus nidulans Is Sustained by the SltA Pathway Through the SLC-Family Transporters SbtA and SbtB
نویسندگان
چکیده
Microbial cells interact with the environment by adapting to external changes. Signal transduction pathways participate in both sensing and responding in the form of modification of gene expression patterns, enabling cell survival. The filamentous fungal-specific SltA pathway regulates tolerance to alkalinity, elevated cation concentrations and, as shown in this work, also stress conditions induced by borates. Growth of sltA- mutants is inhibited by increasing millimolar concentrations of boric acid or borax (sodium tetraborate). In an attempt to identify genes required for boron-stress response, we determined the boric acid or borax-dependent expression of sbtA and sbtB, orthologs of Saccharomyces cerevisiae bor1, and a reduction in their transcript levels in a ΔsltA mutant. Deletion of sbtA, but mainly that of sbtB, decreased the tolerance to boric acid or borax. In contrast, null mutants of genes coding for additional transporters of the Solute Carrier (SLC) family, sB, sbtD or sbtE, showed an unaltered growth pattern under the same stress conditions. Taken together, our results suggest that the SltA pathway induces, through SbtA and SbtB, the export of toxic concentrations of borates, which have largely recognized antimicrobial properties.
منابع مشابه
Proteolytic activation of both components of the cation stress–responsive Slt pathway in Aspergillus nidulans
Tolerance of Aspergillus nidulans to alkalinity and elevated cation concentrations requires both SltA and SltB. Transcription factor SltA and the putative pseudokinase/protease signaling protein SltB comprise a regulatory pathway specific to filamentous fungi. In vivo, SltB is proteolytically cleaved into its two principal domains. Mutational analysis defines a chymotrypsin-like serine protease...
متن کاملA second component of the SltA - dependent cation tolerance pathway in Aspergillus 1 nidulans . 2 3 4
متن کامل
Rescue of Aspergillus nidulans severely debilitating null mutations in ESCRT-0, I, II and III genes by inactivation of a salt-tolerance pathway allows examination of ESCRT gene roles in pH signalling
The Aspergillus pal pathway hijacks ESCRT proteins into ambient pH signalling complexes. We show that components of ESCRT-0, ESCRT-I, ESCRT-II and ESCRT-III are nearly essential for growth, precluding assessment of null mutants for pH signalling or trafficking. This severely debilitating effect is rescued by loss-of-function mutations in two cation tolerance genes, one of which, sltA, encodes a...
متن کاملCharacterisation of Cyanobacterial Bicarbonate Transporters in E. coli Shows that SbtA Homologs Are Functional in This Heterologous Expression System
Cyanobacterial HCO3(-) transporters BCT1, SbtA and BicA are important components of cyanobacterial CO2-concentration mechanisms. They also show potential in applications aimed at improving photosynthetic rates and yield when expressed in the chloroplasts of C3 crop species. The present study investigated the feasibility of using Escherichia coli to assess function of a range of SbtA and BicA tr...
متن کاملTwo zinc finger transcription factors, CrzA and SltA, are involved in cation homoeostasis and detoxification in Aspergillus nidulans.
To investigate cation adaptation and homoeostasis in Aspergillus nidulans, two transcription-factor-encoding genes have been characterized. The A. nidulans orthologue crzA of the Saccharomyces cerevisiae CRZ1 gene, encoding a transcription factor mediating gene regulation by Ca(2+), has been identified and deleted. The crzA deletion phenotype includes extreme sensitivity to alkaline pH, Ca(2+) ...
متن کامل